Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 30, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
The electrification of transportation is a growing strategy to reduce mobile source emissions and air pollution globally. To encourage adoption of electric vehicles, there is a need for reliable evidence about pricing in pub-lic charging stations that can serve a greater number of communities. However, user-entered pricing information by thousands of charge point operators (CPOs) has created ambiguity for large-scale aggregation, increasing both the cost of analysis for researchers and search costs for consumers. In this paper, we use large language models to address standing challenges with price discovery in distributed digital data. We show that generative AI models can effectively extract pricing mechanisms from unstructured text with high accuracy, and at substantially lower cost of three to four orders of magnitude lower than human curation (USD 0.006 pennies per observation). We exploit the few-shot learning capabilities of GPT-4 with human-in-the-loop feedback—beating prior classification performance benchmarks with fewer training data. The most common pricing models include free, energy-based (per kWh), and time-based (per unit time), with tiered pricing (variable pricing based on usage) being the most prevalent among paid stations. Behavioral insights from a US nationally representative sample of 13,008 stations suggest that EV users are commonly frustrated with the slower than expected charging rates and the total cost of charging. This study uncovers additional consumer barriers to charging services concerning the need for better price standardization.more » « less
-
Abstract Micromobility, such as electric scooters and electric bikes—an estimated US$300 billion global market by 2030—will accelerate electrification efforts and fundamentally change urban mobility patterns. However, the impacts of micromobility adoption on traffic congestion and sustainability remain unclear. Here we leverage advances in mobile geofencing and high-resolution data to study the effects of a policy intervention, which unexpectedly banned the use of scooters during evening hours with remote shutdown, guaranteeing near perfect compliance. We test theories of habit discontinuity to provide statistical identification for whether micromobility users substitute scooters for cars. Evidence from a natural experiment in a major US city shows increases in travel time of 9–11% for daily commuting and 37% for large events. Given the growing popularity of restrictions on the use of micromobility devices globally, cities should expect to see trade-offs between micromobility restrictions designed to promote public safety and increased emissions associated with heightened congestion.more » « less
An official website of the United States government
